Improvement of the electrolytic metal pickling process by inter-electrode insulation

نویسندگان

  • N. Ipek
  • A. Eklund
چکیده

The existing industrial electrolytic steel pickling process is only 30% current efficient. Use of approximate modelling of the process and solution of the model predicts that inter-electrode insulation improves the current and energy efficiency, and this paper describes the experimental work that has validated this prediction. Some of the main results are: (a) the current efficiency varied from 20% without insulation to 100% with complete insulation, (b) the use of just partial insulations yielded a significant improvement in the process efficiency and at the same time maintained good electrolyte mixing and homogeneity which can not be attained with complete insulation. The theoretical foundations of this method and its various consequences are discussed. The method is relatively easy to apply to existing industrial electrolytic pickling tanks, and also provides system control flexibility for optimal pickling of different steel grades. The method’s application cost is relatively low and saves investment in new equipment if a retrofit of an existing system is desired.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Analytical Model Predicting Some Features of the Electrolytic Steel-Pickling Process

Electrolytic pickling of steel with neutral solutions, to remove the surface scale, reduces the need for the use of strong acids as needed in conventional pickling. This study is a step towards a more in-depth understanding of the factors affecting the former process. A theoretical model, sufficiently simplified to allow analytical solution, is developed and evaluated to provide a first approxi...

متن کامل

A simplified method for manufacturing glass-insulated metal microelectrodes.

A simplified method to manufacture durable, glass-insulated, tungsten microelectrodes with sufficient control of the final electrode impedance is described. This method requires only two instruments, an electrolytic etcher for wires and pipette puller, for manufacturing these electrodes. The manufacture of these electrodes involves 3 steps: (1) etching tungsten wire to sharpen the tip, (2) insu...

متن کامل

PREPARATION OF CATALYTIC COATING OF TITANIUM OXIDE BY MEANS OF ELECTROLYTIC DEPOSITION

In the current research, the optimum conditions for the electrolytic deposition of TiO2 coatings on titanium pieces were experimentally investigated. Flat pieces of commercially available titanium with dimensions of 50 x20 x3 mm were used as the anode and cathode electrodes. The coatings were applied on the cathode in an electrolyte solution essentially from water and methanol, containing diffe...

متن کامل

STUDY THE WEAR MECHANISM OF A PLASMA ELECTROLYTIC NITROCARBURISED (PEN/C) 316L AUSTENITIC STAINLESS STEEL

The wear mechanism of plasma electrolytic nitrocarburised (PEN/C) 316L stainless steel samples was studied after a pin on disc wear test. The surface morphology of samples after application of PEN/C process was studied using scanning electron microscope technique. The sliding tracks resulting from the wear tests on the treated specimens indicated no signs of plastic deformation and adhesive wea...

متن کامل

Highly Electrocatalytic Oxidation of Bisphenol A at Glassy Carbon Electrode Modified with Metal-organic Framework MOF-508a and its Application in Real Sample Analysis

The use MOF-508a as sensing component for the precise discerning of bisphenol A via the electrochemical technique and its synthesis by a simple method were reported in the present study. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were applied to describe the MOF-508a’s composition and structure. In addition, MOF-508a was exploited so that the glassy carbon electrode could be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005